Conduction Mechanisms in Metal Oxide Varistors

LIONEL M. LEVINSON AND H. R. PHILIPP

General Electric Corporate Research and Development, Schenectady, New York 12301

Received July 3, 1974

Metal oxide varistors are novel, ZnO-based ceramic semiconductor devices with highly nonlinear current-voltage characteristics similar to back-to-back Zener diodes, but with much greater current and energy handling capabilities. These materials represent a rapidly developing field in the technology of electronic oxide ceramics.

The varistors are produced by a liquid phase sintering process which gives rise to a structure comprised of conductive ZnO grains surrounded by thin insulating oxide barriers. The chemical and physical properties of the phases constituting the resulting 3dimensional series-parallel junction network will be discussed, and the novel electrical properties interpreted in terms of the material microstructure.

Evidence is presented from a variety of sources to indicate that the thickness t of the intergranular barriers relevant to varistor conduction is 100 Å $\lesssim t \lesssim 500$ Å. The corresponding field F in the intergranular material associated with varistor action is $F \sim 10^6$ V/cm. The highly nonlinear conduction

mechanism observed at "breakdown" is consistent with a Fowler-Nordheim type tunneling process obeying a current-density vs field relation given by $J \propto e^{-\gamma/F}$ where γ is a constant. At somewhat lower fields (prebreakdown region) the conduction mechanism follows a thermally activated Poole-Frenkel type law of the form $J \propto e^{-(E_t\beta(F)\frac{1}{2})/2kT}$. where $E_i(\sim 1.6 \text{ eV})$ is the ionization energy. Both conduction mechanisms, each dominant for different field-temperature domains, describe a process whereby an electron in a bound state of the intergranular material escapes to the conduction band, where it can contribute to the conductivity. An analysis of the measured current-voltage characteristics of a GE-MOVTM varistor at various temperatures in terms of Poole-Frenkel and Fowler-Nordheim emission is in excellent agreement with the data. The empirical power law behavior $J = (F/K)^{\alpha}$, often used to describe the I-V characteristics, is shown to be a fair approximation to the Fowler-Nordheim relation $J \propto e^{-\gamma/F}$.